Work through the examples and questions on this worksheet in groups, or on your own. Focus on understanding when and why you look at the derivative of a function for these new concepts.

A critical point (or stationary point) of $f(x)$ is a point $(a, f(a))$ such that $f^{\prime}(a)=0$.
Recall that, geometrically, these are points on the graph of $f(x)$ who have a "flat" tangent line, i.e. a constant tangent line.

Example 1:

Find all critical points of $f(x)=x^{3}-3 x^{2}-9 x+5$.
We see that the derivative is $f^{\prime}(x)=3 x^{2}-6 x-9$. We need to solve $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right)=3(x+1)(x-3)=0 \Longrightarrow x=-1, x=3
$$

Thus the critical points of $f(x)$ are $(-1, f(-1))=(-1,10)$ and $(3, f(3))=(3,-22)$.
Example 2:
Find all critical points of $f(t)=e^{-3 t}+2 t$.
Differentiating yields $f^{\prime}(t)=-3 e^{-3 t}+2$. Now we solve $f^{\prime}(t)=0$.

$$
f^{\prime}(t)=-3 e^{-3 t}+2=0 \Longrightarrow 2=3 e^{-3 t} \Longrightarrow \frac{2}{3} \Longrightarrow \ln \left(\frac{2}{3}\right)=-3 t \Longrightarrow \frac{1}{3} \ln \left(\frac{3}{2}\right)=t
$$

Thus the only critical point of $f(t)$ is $\left(\frac{1}{3} \ln (1.5), f\left(\frac{1}{3} \ln (1.5)\right)\right)=\left(\frac{1}{3} \ln (1.5), \frac{2}{3}(1+\ln (1.5))\right) \approx(0.135,0.937)$.

Problems

Find all critical points of the given functions.

1. $f(x)=x^{3}-6 x+1$
2. $f(x)=x^{3}+6 x+1$
3. $f(x)=3 x^{5}-5 x^{3}$
4. $f(x)=e^{x}-10 x$
5. $y=x \ln (x),(x>0)$
6. $y=x e^{-3 x}$
7. $f(x)=x+\frac{1}{x}$
8. $f(x)=3 x^{4}-4 x^{3}+6$
9. $y=\left(x^{2}-4\right)^{7}$
10. $y=\left(x^{3}-8\right)^{7}$
11. $f(x)=x^{2} \ln (x)$
12. $y=(x+1)^{5}$
13. $y=\frac{x}{x^{2}+1}$
14. $y=\sqrt{x^{2}+1}$
15. $g(x)=\left(4 x^{2}+1\right)^{7}$

You may notice, particularly from the graph on page 1 , that the critical points seem to coincide with the peaks of the graph. These is almost true. In fact we have the following definition:

Suppose $(a, f(a))$ is a critical point of $f(x)$. Then,

$$
\begin{gathered}
(a, f(a)) \text { is a local minimum } \Longleftrightarrow f^{\prime \prime}(a)>0 \\
(a, f(a)) \text { is a local maximum } \Longleftrightarrow f^{\prime \prime}(a)<0 \\
(a, f(a)) \text { is a point of inflection } \Longleftrightarrow f^{\prime \prime}(a)=0
\end{gathered}
$$

We can think of this definition as a test to identify the local maximum and local minimum points of a function $f(x)$. If $f^{\prime \prime}(a)<0$ or $f^{\prime \prime}(a)>0$ then we have a local maximum or minimum, respectively, and if $f^{\prime \prime}(a)=0$ then we know nothing. Different cases of $f^{\prime \prime}(a)=0$ will be explored later.

Example 1:

Find all local extrema of $f(x)=x^{3}-3 x^{2}-9 x+5$.
In Example 1 on the previous page we found $f^{\prime}(x)=3 x^{2}-6 x-9$ and that the critical points occur at $(-1,10)$ and $(3,-22)$. To apply the second derivative test we must first compute the second derivative;

$$
f^{\prime \prime}(x)=6 x-6
$$

Then we simply take the points $x=-1$ and $x=3$ and plug them into $f^{\prime \prime}(x)$.

$$
\begin{array}{lll}
x=-1: & x=3: & \\
f^{\prime \prime}(-1)= & 6(-1)-6=-6-6=-12<0 & \\
& \Longrightarrow \text { Local Maximum } & f^{\prime \prime}(3)=6(3)-6=18-6=12>0
\end{array}
$$

So the function $f(x)$ has a local maximum at the point $(-1,10)$ and a local minimum at the point $(3,-22)$.
Example 2:
Find all local extrema of $f(t)=e^{-3 t}+2$.
In Example 2 on the previous page we found $f^{\prime}(t)=-3 e^{-3 t}+2$ and that the only critical point occurs at $t=\frac{1}{3} \ln (1.5)$. To apply the second derivative test we must first compute the second derivative;

$$
f^{\prime \prime}(t)=9 e^{-3 t}
$$

Now we simply plug in $t=\frac{1}{3} \ln (1.5)$ into $f^{\prime \prime}(t)$.

$$
f^{\prime \prime}\left(\frac{1}{3} \ln (1.5)\right)=9 e^{-3(\ln (1.5) / 3)}=9 e^{-\ln (1.5)}=9 e^{\ln (2 / 3)}=9(2 / 3)=6>0 \Longrightarrow \text { Local Minimum. }
$$

So the function $f(t)$ has a local minimum at the point $t=\frac{1}{3} \ln (1.5)$.

Example 3:

Find all local extrema of $y=x+\frac{1}{x}$.
First we calculate the critical point(s) of y. Differentiating gives $y^{\prime}=1-x^{-2}$. Solving $y^{\prime}=0$ gives

$$
y^{\prime}=1-x^{-2}=0 \Longrightarrow 1=x^{-2} \Longrightarrow 1=\frac{1}{x^{2}} \Longrightarrow 1=x^{2} \Longrightarrow x=-1 \text { or } x=1
$$

Next we find the second derivative,

$$
y^{\prime \prime}=2 x^{-3}=\frac{2}{x^{3}}
$$

Finally we plug both $x=-1$ and $x=1$ into $y^{\prime \prime}$.
$x=-1$:
$y^{\prime \prime}(-1)=\frac{2}{(-1)^{3}}=\frac{2}{-1}=-2<0 \Longrightarrow$ Local Maximum

$$
x=1
$$

$$
y^{\prime \prime}(1)=\frac{2}{1^{3}}=\frac{2}{1}=2>0 \Longrightarrow \text { Local Minimum }
$$

Thus y has a local maximum at the point $(-1, y(-1))=(-1,-2)$ and a local minimum at the point $(1, y(1))=(1,2)$.

Problems

Go back and classify the critical points in questions $1-15$ on page 1 as maximum, minimum or neither (points of inflection).

Answers

Critical Points

1. $f^{\prime}(x)=3 x^{2}-6$
C. Pts:
$(\sqrt{2}, 1-4 \sqrt{2}) \approx(1.414,-4.657)$
$(-\sqrt{2}, 1+4 \sqrt{2}) \approx(-1.414,6.657)$
2. $f^{\prime}(x)=3 x^{2}+6$
C. Pts:

None.
6. $y^{\prime}=e^{-3 x}-3 x e^{-3 x}$
(0, -2097152)
C. Pts: $\quad(2,0)$
$\left(\frac{1}{3}, \frac{1}{3 e}\right)$
7. $f^{\prime}(x)=1-x^{-2}$
C. Pts:
$(-1,-2)$
$(1,2)$
3. $f^{\prime}(x)=15 x^{4}-15 x^{2}=15 x^{2}\left(x^{2}-1\right)$
C. Pts:
$(0,0)$
$(1,-2)$
8. $f^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)$
C. Pts:
$(0,6)$
$(1,5)$
9. $y^{\prime}=14 x\left(x^{2}-4\right)^{6}$
4. $f^{\prime}(x)=e^{x}-10$
C. Pts:
$(\ln (10), 10(1-\ln (10))) \approx(2.302,-13.026)$
5. $y^{\prime}=\ln (x)+1$
C. Pts:
$\left(\frac{1}{e},-\frac{1}{e}\right) \approx(0.368,-0.368)$
C. Pts:
$(0,-16384)$
$(2,0)$
$(-2,0)$
11. $f^{\prime}(x)=2 x \ln (x)+x$
C. Pts:
$\left(\frac{1}{\sqrt{e}}, 1 \frac{1}{2 e}\right)$
12. $y^{\prime}=5(x+1)^{4}$
C.Pts:
$(-1,0)$
13. $y^{\prime}=\left(x^{2}+1\right)^{-1}-2 x^{2}\left(x^{2}+1\right)^{-2}$
C. Pts:
$\left(-1,-\frac{1}{2}\right)$
(1, $\frac{1}{2}$)
14. $y^{\prime}=x{\sqrt{x^{2}+1}}^{-1 / 2}$
C. Pts:
$(0,1)$
15. $g^{\prime}(x)=56 x\left(4 x^{2}+1\right)^{6}$
10. $y^{\prime}=21 x^{2}\left(x^{3}-8\right)^{6}$
C. Pts:
$(0,1)$

Local Extrema

1. $\begin{aligned} & f^{\prime \prime}(x)=6 x \\ & (\sqrt{2}, 1-4 \sqrt{2}) \text { Min. } \\ & (-\sqrt{2}, 1+4 \sqrt{2}) \text { Max. }\end{aligned}$
2. $f^{\prime \prime}(x)=6 x$

None.
3. $f^{\prime \prime}(x)=60 x^{3}-30 x=30 x\left(2 x^{2}-1\right)$ $(0,0)$ Neither
$(1,-2)$ Min.
$(-1,2)$ Max.
4. $f^{\prime \prime}(x)=e^{x}$
$(\ln (10), 10(1-\ln (10)))$ Min.
5. $y^{\prime \prime}=x^{-1}$
$\left(\frac{1}{e},-\frac{1}{e}\right)$ Min.
6. $y^{\prime \prime}=-6 e^{-3 x}+9 x e^{-3 x}$
$\left(\frac{1}{3}, \frac{1}{3 e}\right)$ Max.
7. $f^{\prime \prime}(x)=2 x^{-3}$
$(-1,-2)$ Min. $(1,2)$ Max.
8. $f^{\prime \prime}(x)=36 x^{2}-24 x=12 x(3 x-2)$
$(0,6)$ Neither $(1,5)$ Min.
9. $y^{\prime \prime}=14\left(x^{2}-4\right)^{6}+168 x^{2}\left(x^{2}-4\right)^{5}$
$(0,-16384)$ Min.
$(2,0)$ Neither
$(-2,0)$ Neither
10. $y^{\prime \prime}=42 x\left(x^{3}-8\right)^{6}+378 x^{4}\left(x^{3}-8\right)^{5}$
$(0,-2097152)$ Neither
$(2,0)$ Neither
11. $f^{\prime \prime}(x)=2 \ln (x)+3$
$\left(\frac{1}{\sqrt{e}},-\frac{1}{2 e}\right)$ Min.
12. $y^{\prime \prime}=20(x+1)^{3}$
$(-1,0)$ Neither
13. $y^{\prime \prime}=-2 x\left(x^{2}+1\right)^{-2}-4 x\left(x^{2}+1\right)^{-2}+8 x^{3}\left(x^{2}+\right.$

1) $^{-3}$
$\left(-1,-\frac{1}{2}\right)$ Min.
($1, \frac{1}{2}$) Max.
14. $y^{\prime \prime}={\sqrt{x^{2}+1}}^{-1 / 2}-x^{2}{\sqrt{x^{2}+1}}^{-1 / 2}$
$(0,1)$ Min.
15. $g^{\prime \prime}(x)=56\left(4 x^{2}+1\right)^{6}+3088 x^{2}\left(4 x^{2}+1\right)^{5}$
$(0,1)$ Min.
